Combining Distance Matrices on Identical Taxon Sets for Multi-Gene Analysis with Singular Value Decomposition
نویسندگان
چکیده
We present a simple and effective method for combining distance matrices from multiple genes on identical taxon sets to obtain a single representative distance matrix from which to derive a combined-gene phylogenetic tree. The method applies singular value decomposition (SVD) to extract the greatest common signal present in the distances obtained from each gene. The first right eigenvector of the SVD, which corresponds to a weighted average of the distance matrices of all genes, can thus be used to derive a representative tree from multiple genes. We apply our method to three well known data sets and estimate the uncertainty using bootstrap methods. Our results show that this method works well for these three data sets and that the uncertainty in these estimates is small. A simulation study is conducted to compare the performance of our method with several other distance based approaches (namely SDM, SDM* and ACS97), and we find the performances of all these approaches are comparable in the consensus setting. The computational complexity of our method is similar to that of SDM. Besides constructing a representative tree from multiple genes, we also demonstrate how the subsequent eigenvalues and eigenvectors may be used to identify if there are conflicting signals in the data and which genes might be influential or outliers for the estimated combined-gene tree.
منابع مشابه
Disguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition
Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...
متن کاملStatistical Analysis of the Smallest Singular Value in MIMO Transmission Systems
— Multi-Input Multi-Output (MIMO) transmission has been a topic of great interest for a few years due to the huge spectral ef ciency gain it can provide over rich scattering transmission channels, such as indoor (e.g. wireless local area networks) or urban outdoor (e.g. mobile wireless communications). MIMO transmission channels are usually modelled by random matrices. In this paper, we use res...
متن کاملFeature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition
Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...
متن کاملSymbolic computation of the Duggal transform
Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...
متن کاملOn structured singular values of reciprocal matrices
Computing the structured singular value (or ) is a bottleneck of the robustness analysis and synthesis of control systems. In this paper, it is shown that is identical to the maximum singular value for an important class of matrices called reciprocal, which re ects the intrinsic symmetry of physical world.
متن کامل